

Overall Scope (bncs.ucsd.edu)

<u>Centerpiece of Project</u>: Three-phased full-scale test program conducted on a 5-story building-NCS system

@Largest outdoor shake table in the world (nees.ucsd.edu)

3

Size	7.6m x 12.2m
Peak accel : bare table, 400T payload	4.2 g, 1.2 g
Peak velocity	1.8 m/s
Stroke	±0.75m
Max vertical payload	20 MN
Force capacity of actuators	6.8 MN

EERI SD Meeting November 14, 2012

Sei	smic T	est Phase Car	nera Summary
Camera Type	Number of Cameras	Purpose	
IP	56	Capture visual data within the structure with input from industry partners – emphasis on NCS's	
Соах	16	Capture visual data within the structure – emphasis on NCS's	
HD Camcorder	8	Capture overall views and external visual data	
GoPro	7	Capture visual data within the structure – emphasis on structural components	
Total Num	ber of Came	eras: 87	3N /
22		EERI SC	mber 14, 2012

Motion No.	Date	Earthquake (seed) record	Short name	Target
1	16-Apr-12	Canoga Park, Northridge, 1994	BI-1: CNP100	~Service level
2	16-Apr-12	LA City Terrace, Northridge, 1994	BI-2: LAC100	~Service level
3	17-Apr-12	LA City Terrace, Northridge, 1994	BI-3: LAC100	~Service level
4	17-Apr-12	San Pedro, Maule, Chile 2010	BI-4: SP100	Duration
5	26-Apr-12	ICA, Pisco, Peru, 2007	BI-5: ICA50	Duration, mult runs
6	27-Apr-12	ICA, Pisco, Peru, 2007	BI-6: ICA100	
7	27-Apr-12	ICA, Pisco, Peru, 2007	BI-7: ICA140	
8	7-May-12	Canoga Park, Northridge, 1994	FB-1: CNP100	~Service level
9	9-May-12	LA City Terrace, Northridge, 1994	FB-2: LAC100	~Service level
10	9-May-12	ICA, Pisco, Peru, 2007	FB-3: ICA50	Sequencing
11	11-May-12	ICA, Pisco, Peru, 2007	FB-4: ICA100	~ 1-1.5% IDR
12	15-May-12	Pump Station #9, Denali, Alaska, 2002	FB-5: Den67	~ DE
13	15-May-12	Pump Station #9, Denali, Alaska, 2002	FB-6: Den100	~ 50%>DE

Test S	Sequence	Brackets	Rails	Door System	Functionality
	CNP100	Non-Visible	Non-Visible	Non-Visible	Fully Functional
	LAC100	Non-Visible	Non-Visible	Non-Visible	Fully Functional
Fixed-	ICA50	Non-Visible	Non-Visible	Non-Visible	Fully Functional
Base	ICA100	Non-Visible	Non-Visible	Non-Visible	Fully Functional
Tests	DEN67	N/A	N/A	Moderate	Functional
	DEN100	Minor	Minor	Severe	Non-Functional
Elevator 5 :DEN1 Door Jan Door Jan	Door Gap (2 00 1b at levels 2 1b at level 1	Minor) 2 and 3 (Seve (Moderate)	re)		
	il elastic her	nding at levels	2 and 3 due to	o structural pe	rmanent drift (N

Lower Flight to Slab Embed Connections

Lower flight – floor connection

- 4"x3"x1/4" angle
- 3/16" fillet weld 2" long @ 12" welded to embed (effective weld length 6" connection angle assumed 3' wide to embed)
- 3/16" fillet weld 2" long @ 12" welded to tread (effective weld length 6" connection angle assumed 3' wide to embed)
- Electrode: E70 (70 ksi)

Weld Design Strength (LRFD)

- Weld design strength: φRn
- $\varphi = 0.75$ (from AISC Table J2.5)
- Load angle not considered
- Weld design strength = 0.75(0.60)(70)(cos(45)(3/16")(6")) = 20.0 (kips)

41

Upper Flight to Slab Embed Connections

Upper flight – floor connection

- 3"x2"x1/4" angle connection
- 3/16" vertical fillet weld to stringers (3" on both side, 6" in total)
- 3/16" fillet weld 2" long @ 12" to embeds (same as lower connection)
- Electrode: E70 (70 ksi)

Weld Design Strength (LRFD)

- Weld design strength: φRn
- $\varphi = 0.75$ (from AISC Table J2.5)
- Load angle not considered

42

 Weld design strength = 0.75(0.60)(70)(cos(45)(3/16")(6")) = 20.0 (kips)

		Risk Category		
Structure	I or II	ш	IV	
Structures, other than masonry shear wall structures, 4 stories or less above the base as defined in Section 11.2, with interior walls, partitions, ceilings, and exterior wall system that have been designed to accommodate the story drifts.	$0.025h_{sx}^{c}$	$0.020h_{sx}$	0.015h	
Masonry cantilever shear wall structures ^d	$0.010h_{sx}$	$0.010h_{sx}$	0.010h	
Other masonry shear wall structures	$0.007h_{sx}$	$0.007h_{sx}$	0.007 <i>h</i>	
All other structures	$0.020h_{sx}$	$0.015h_{sx}$	0.010/	
h_{α} is the story height below Level x. ³ For seismic force-resisting systems comprised solely of moment frames in Seismic Design Catego comply with the requirements of Section 12.12.1.1. ⁴ There shall be no drift limit for single-story structures with interior walls, partitions, ceilings, and to accommodate the story drifts. The structure separation requirement of Section 12.12.3 is not wai ⁴ Structures in which the basic structural system consists of masonry shear walls designed as vertica foundation support which are so constructed that moment transfer between shear walls (coupling) i	ties D, E, and F, th exterior wall syste ved. I elements cantilev negligible.	ne allowable stores that have been vered from their	ry drift sha en designe base or	
foundation support which are so constructed that moment transfer between shear walls (coupling) i 49 EEPISD Monsting	negligible.	per 14,201	2	

Thanks for your attention!

